Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 18, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168085

RESUMEN

The Baltic Sea is one of the largest brackish water environments on earth and is characterised by pronounced physicochemical gradients and seasonal dynamics. Although the Baltic Sea has a long history of microscopy-based plankton monitoring, DNA-based metabarcoding has so far mainly been limited to individual transect cruises or time-series of single stations. Here we report a dataset covering spatiotemporal variation in prokaryotic and eukaryotic microbial communities and physicochemical parameters. Within 13-months between January 2019 and February 2020, 341 water samples were collected at 22 stations during monthly cruises along the salinity gradient. Both salinity and seasonality are strongly reflected in the data. Since the dataset was generated with both metabarcoding and microscopy-based methods, it provides unique opportunities for both technical and ecological analyses, and is a valuable biodiversity reference for future studies, in the prospect of climate change.


Asunto(s)
Microbiota , Plancton , Países Bálticos , Biodiversidad , Agua de Mar
3.
Commun Biol ; 4(1): 148, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514890

RESUMEN

Climate change-induced glacial melt affects benthic ecosystems along the West Antarctic Peninsula, but current understanding of the effects on benthic primary production and respiration is limited. Here we demonstrate with a series of in situ community metabolism measurements that climate-related glacial melt disturbance shifts benthic communities from net autotrophy to heterotrophy. With little glacial melt disturbance (during cold El Niño spring 2015), clear waters enabled high benthic microalgal production, resulting in net autotrophic benthic communities. In contrast, water column turbidity caused by increased glacial melt run-off (summer 2015 and warm La Niña spring 2016) limited benthic microalgal production and turned the benthic communities net heterotrophic. Ongoing accelerations in glacial melt and run-off may steer shallow Antarctic seafloor ecosystems towards net heterotrophy, altering the metabolic balance of benthic communities and potentially impacting the carbon balance and food webs at the Antarctic seafloor.


Asunto(s)
Procesos Autotróficos , Biota , Ciclo del Carbono , Calentamiento Global , Procesos Heterotróficos , Microalgas/metabolismo , Regiones Antárticas , Monitoreo del Ambiente , Cadena Alimentaria , Hielo , Microalgas/crecimiento & desarrollo , Océanos y Mares , Estaciones del Año
4.
J Phycol ; 55(3): 663-675, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30685888

RESUMEN

Wide salinity ranges experienced during the seasonal freeze and melt of sea ice likely constrain many biological processes. Microorganisms generally protect against fluctuating salinities through the uptake, production, and release of compatible solutes. Little is known, however, about the use or fate of glycine betaine (GBT hereafter), one of the most common compatible solutes, in sea-ice diatoms confronted with shifts in salinity. We quantified intracellular concentrations and used [14 C]-labeled compounds to track the uptake and fate of the nitrogen-containing osmolyte GBT and its precursor choline in three Antarctic sea-ice diatoms Nitzschia lecointei, Navicula cf. perminuta, and Fragilariopsis cylindrus at -1°C. Experiments show that these diatoms have effective transporters for GBT, but take up lesser amounts of choline. Neither compound was respired. Uptake of GBT protected cells against hyperosmotic shock and corresponded with reduced production of extracellular polysaccharides in N. lecointei cells, which released 85% of the retained GBT following hypoosmotic shock. The ability of sea-ice diatoms to rapidly scavenge and release compatible solutes is likely an important strategy for survival during steep fluctuations in salinity. The release and recycling of compatible solutes may play an important role in algal-bacterial interactions and nitrogen cycling within the semi-enclosed brines of sea ice.


Asunto(s)
Diatomeas , Cubierta de Hielo , Regiones Antárticas , Betaína , Colina
5.
PLoS One ; 13(12): e0207917, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30566444

RESUMEN

Measurements of biogeochemical fluxes at the sediment-water interface are essential to investigate organic matter mineralization processes but are rarely performed in shallow coastal areas of the Antarctic. We investigated biogeochemical fluxes across the sediment-water interface in Potter Cove (King George Island/Isla 25 de Mayo) at water depths between 6-9 m. Total fluxes of oxygen and inorganic nutrients were quantified in situ. Diffusive oxygen fluxes were also quantified in situ, while diffusive inorganic nutrient fluxes were calculated from pore water profiles. Biogenic sediment compounds (concentration of pigments, total organic and inorganic carbon and total nitrogen), and benthic prokaryotic, meio-, and macrofauna density and biomass were determined along with abiotic parameters (sediment granulometry and porosity). The measurements were performed at three locations in Potter Cove, which differ in terms of sedimentary influence due to glacial melt. In this study, we aim to assess secondary effects of glacial melting such as ice scouring and particle release on the benthic community and the biogeochemical cycles they mediate. Furthermore, we discuss small-scale spatial variability of biogeochemical fluxes in shallow water depth and the required food supply to cover the carbon demand of Potter Cove's shallow benthic communities. We found enhanced mineralization in soft sediments at one location intermediately affected by glacial melt-related effects, while a reduced mineralization was observed at a location influenced by glacial melting. The benthic macrofauna assemblage constituted the major benthic carbon stock (>87% of total benthic biomass) and was responsible for most benthic organic matter mineralization. However, biomass of the dominant Antarctic bivalve Laternula elliptica, which contributed 39-69% to the total macrofauna biomass, increased with enhanced glacial melt-related influence. This is contrary to the pattern observed for the remaining macrofauna. Our results further indicated that pelagic primary production is able to fully supply Potter Cove's benthic carbon demand. Therefore, Potter Cove seems to be an autotrophic ecosystem in the summer season.


Asunto(s)
Sedimentos Geológicos/química , Cubierta de Hielo/química , Animales , Regiones Antárticas , Biomasa , Carbono/análisis , Ecosistema , Sedimentos Geológicos/microbiología , Cubierta de Hielo/microbiología , Nitrógeno/análisis , Oxígeno/análisis , Estaciones del Año
6.
Crit Care ; 22(1): 272, 2018 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-30368249

RESUMEN

BACKGROUND: Pathogenic enteric bacteria aspirated from the oropharynx are the main cause of ventilator-associated pneumonia (VAP). Using chlorhexidine (CHX) orally or selective decontamination has been shown to reduce VAP. In a pilot study we found that oral care with the probiotic bacterium Lactobacillus plantarum 299 (Lp299) was as effective as CHX in reducing enteric bacteria in the oropharynx. To confirm those results, in this expanded study with an identical protocol we increased the number of patients and participating centres. METHODS: One hundred and fifty critically ill patients on mechanical ventilation were randomised to oral care with either standard 0.1% CHX solution (control group) or a procedure comprising final application of an emulsion of Lp299. Samples for microbiological analyses were taken from the oropharynx and trachea at inclusion and subsequently at defined intervals. Student's t test was used for comparisons of parameters recorded daily and Fisher's exact test was used to compare the results of microbiological cultures. RESULTS: Potentially pathogenic enteric bacteria not present at inclusion were identified in oropharyngeal samples from 29 patients in the CHX group and in 31 samples in the probiotic group. Considering cultures of tracheal secretions, enteric bacteria were found in 17 and 19 samples, respectively. Risk ratios show a difference in favour of the Lp group for fungi in oropharyngeal cultures. VAP was diagnosed in seven patients in the Lp group and in 10 patients among the controls. CONCLUSIONS: In this multicentre study, we could not demonstrate any difference between Lp299 and CHX used in oral care procedures regarding their impact on colonisation with emerging potentially pathogenic enteric bacteria in the oropharynx and trachea. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01105819 . Registered on 9 April 2010. First part: Current Controlled Trials, ISRCTN00472141 . Registered on 22 November 2007 (published Critical Care 2008, 12:R136).


Asunto(s)
Higiene Bucal/métodos , Probióticos/uso terapéutico , Anciano , Antiinfecciosos Locales/farmacología , Antiinfecciosos Locales/uso terapéutico , Clorhexidina/uso terapéutico , Enfermedad Crítica/terapia , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Tiempo de Internación/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Higiene Bucal/tendencias , Neumonía Asociada al Ventilador/prevención & control , Probióticos/farmacología , Estudios Prospectivos , Respiración Artificial/tendencias
7.
PLoS One ; 13(4): e0195587, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29634756

RESUMEN

Our study addresses how environmental variables, such as macronutrients concentrations, snow cover, carbonate chemistry and salinity affect the photophysiology and biomass of Antarctic sea-ice algae. We have measured vertical profiles of inorganic macronutrients (phosphate, nitrite + nitrate and silicic acid) in summer sea ice and photophysiology of ice algal assemblages in the poorly studied Amundsen and Ross Seas sectors of the Southern Ocean. Brine-scaled bacterial abundance, chl a and macronutrient concentrations were often high in the ice and positively correlated with each other. Analysis of photosystem II rapid light curves showed that microalgal cells in samples with high phosphate and nitrite + nitrate concentrations had reduced maximum relative electron transport rate and photosynthetic efficiency. We also observed strong couplings of PSII parameters to snow depth, ice thickness and brine salinity, which highlights a wide range of photoacclimation in Antarctic pack-ice algae. It is likely that the pack ice was in a post-bloom situation during the late sea-ice season, with low photosynthetic efficiency and a high degree of nutrient accumulation occurring in the ice. In order to predict how key biogeochemical processes are affected by future changes in sea ice cover, such as in situ photosynthesis and nutrient cycling, we need to understand how physicochemical properties of sea ice affect the microbial community. Our results support existing hypothesis about sea-ice algal photophysiology, and provide additional observations on high nutrient concentrations in sea ice that could influence the planktonic communities as the ice is retreating.


Asunto(s)
Alimentos , Cubierta de Hielo , Luz , Microalgas/fisiología , Microalgas/efectos de la radiación , Océanos y Mares , Estaciones del Año , Regiones Antárticas , Biomasa , Microalgas/metabolismo
8.
Mar Biol ; 165(4): 63, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29563649

RESUMEN

Helcom scenario modelling suggests that the Baltic Sea, one of the largest brackish-water bodies in the world, could expect increased precipitation (decreased salinity) and increased concentration of atmospheric CO2 over the next 100 years. These changes are expected to affect the microplanktonic food web, and thereby nutrient and carbon cycling, in a complex and possibly synergistic manner. In the Baltic Proper, the extensive summer blooms dominated by the filamentous cyanobacteria Aphanizomenon sp., Dolichospermum spp. and the toxic Nodularia spumigena contribute up to 30% of the yearly new nitrogen and carbon exported to the sediment. In a 12 days outdoor microcosm experiment, we tested the combined effects of decreased salinity (from 6 to 3) and elevated CO2 concentrations (380 and 960 µatm) on a natural summer microplanktonic community, focusing on diazotrophic filamentous cyanobacteria. Elevated pCO2 had no significant effects on the natural microplanktonic community except for higher biovolume of Dolichospermum spp. and lower biomass of heterotrophic bacteria. At the end of the experimental period, heterotrophic bacterial abundance was correlated to the biovolume of N. spumigena. Lower salinity significantly affected cyanobacteria together with biovolumes of dinoflagellates, diatoms, ciliates and heterotrophic bacteria, with higher biovolume of Dolichospermum spp. and lower biovolume of N. spumigena, dinoflagellates, diatoms, ciliates and heterotrophic bacteria in reduced salinity. Although the salinity effects on diatoms were apparent, they could not clearly be separated from the influence of inorganic nutrients. We found a clear diurnal cycle in photosynthetic activity and pH, but without significant treatment effects. The same diurnal pattern was also observed in situ (pCO2, pH). Thus, considering the Baltic Proper, we do not expect any dramatic effects of increased pCO2 in combination with decreased salinity on the microplanktonic food web. However, long-term effects of the experimental treatments need to be further studied, and indirect effects of the lower salinity treatments could not be ruled out. Our study adds one piece to the complicated puzzle to reveal the combined effects of increased pCO2 and reduced salinity levels on the Baltic microplanktonic community.

9.
Proc Biol Sci ; 282(1815)2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26354939

RESUMEN

Increasing atmospheric CO2 levels are driving changes in the seawater carbonate system, resulting in higher pCO2 and reduced pH (ocean acidification). Many studies on marine organisms have focused on short-term physiological responses to increased pCO2, and few on slow-growing polar organisms with a relative low adaptation potential. In order to recognize the consequences of climate change in biological systems, acclimation and adaptation to new environments are crucial to address. In this study, physiological responses to long-term acclimation (194 days, approx. 60 asexual generations) of three pCO2 levels (280, 390 and 960 µatm) were investigated in the psychrophilic sea ice diatom Nitzschia lecointei. After 147 days, a small reduction in growth was detected at 960 µatm pCO2. Previous short-term experiments have failed to detect altered growth in N. lecointei at high pCO2, which illustrates the importance of experimental duration in studies of climate change. In addition, carbon metabolism was significantly affected by the long-term treatments, resulting in higher cellular release of dissolved organic carbon (DOC). In turn, the release of labile organic carbon stimulated bacterial productivity in this system. We conclude that long-term acclimation to ocean acidification is important for N. lecointei and that carbon overconsumption and DOC exudation may increase in a high-CO2 world.


Asunto(s)
Aclimatación , Dióxido de Carbono , Diatomeas/crecimiento & desarrollo , Diatomeas/metabolismo , Regiones Antárticas , Carbonatos , Concentración de Iones de Hidrógeno , Agua de Mar/química
10.
Environ Microbiol ; 17(10): 3869-81, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25845501

RESUMEN

Due to climate change, sea ice experiences changes in terms of extent and physical properties. In order to understand how sea ice microbial communities are affected by changes in physicochemical properties of the ice, we used 454-sequencing of 16S and 18S rRNA genes to examine environmental control of microbial diversity and composition in Antarctic sea ice. We observed a high diversity and richness of bacteria, which were strongly negatively correlated with temperature and positively with brine salinity. We suggest that bacterial diversity in sea ice is mainly controlled by physicochemical properties of the ice, such as temperature and salinity, and that sea ice bacterial communities are sensitive to seasonal and environmental changes. For the first time in Antarctic interior sea ice, we observed a strong eukaryotic dominance of the dinoflagellate phylotype SL163A10, comprising 63% of the total sequences. This phylotype is known to be kleptoplastic and could be a significant primary producer in sea ice. We conclude that mixotrophic flagellates may play a greater role in the sea ice microbial ecosystem than previously believed, and not only during the polar night but also during summer when potential food sources are abundant.


Asunto(s)
Bacterias/genética , Dinoflagelados/genética , Cubierta de Hielo/microbiología , Microbiota/genética , Regiones Antárticas , Bacterias/aislamiento & purificación , Cambio Climático , Frío , Dinoflagelados/aislamiento & purificación , Ecosistema , Ambiente , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Salinidad , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...